

Geotechnical Engineering Environmental Consultancy Soil Concrete Aggregate Testing NATA Accredited Laboratories

ABN 53 058 315 138

ACN 058 315 138

20 February 2023

Reg. No.: S23-020

Riverina Outbuild 6b Altin Street Griffith, NSW 2680

Attention: Mr. Josh Vearing

Dear Josh,

GEOTECHNICAL INVESTIGATION - PROPOSED INDUSTRIAL SHEDS, LAKE CARGELLIGO SOLAR THERMAL PLANT, 212 LAKE CARGELLIGO ROAD, LAKE CARGELLIGO, NSW

Further to a request in an email dated 12 January 2023, we drilled four (4) boreholes to the depth of 4.0m at the proposed location of the two (2) proposed industrial sheds as shown in the attached borehole and DCP test location plan, using our trailer-mounted drill rig on 1 February 2023. Dynamic Cone Penetrometer testing (DCP) was also carried out at each borehole location (BH1 to BH4) to assess the strength of the underlying material at various depths throughout the investigation depth. Disturbed samples were recovered from the boreholes for relevant laboratory testing.

The purpose of the investigation is to assess the type and condition of the underlying soil strata and make recommendation in respect to geotechnical design parameters for the proposed development which includes two (2) large industrial sheds. It should be noted that the car parking and pavements areas are outside the scope of this investigation and report as advised by the client therefore not provided.

1.0 Site Description

The site for the proposed sheds is located within the existing Lake Cargelligo Solar Thermal Plant at No. 222 Lake Cargelligo Road, Lake Cargelligo, NSW (refer to attached site location plan). The proposed new sheds are to be located near the north-east corner of the existing subject site (refer to attached borehole & DCP test location plan) with shed 1 located where the existing boundary fence is located and shed 2 located directly south of shed 1 at the locations as shown in the attached borehole and DCP test location plan. The site is noted as generally flat and covered with shallow fill across the existing solar thermal plant and topsoil outside the boundary fence as noted at the time of the investigation.

2.0 Subsurface Condition

2.1 Proposed Shed Site 1

BH1 and BH2 represent the proposed shed at the location of Site 1. The borehole investigation revealed that the site is generally underlain by fill comprising topsoil to 0.2m in BH1 and 0.15m in BH2 and low plasticity sandy silty clay to 0.35m in BH1 and 0.2m in BH2 overlying natural alluvial material comprising medium plasticity sandy clay (in BH2 only) and high plasticity clays, extending to the borehole termination depth at 4.0m in BH1 and BH2. The fill material encountered across the site appeared to have been placed "poorly compacted" and "uncontrolled".

The moisture condition of the underlying natural alluvial clay-based material was generally greater than plastic limit throughout the investigation depth in BH1 and BH2 at the time of the investigation. No seepage was encountered within the investigated depth during the course of the drilling. It should however be noted that the water table level could fluctuate with changes to the season, temperature and rainfall.

As per the DCP test results and visual observation of the resistance by auger TC bit, the underlying natural alluvial clay-based material is assessed to be generally very stiff consistency throughout the investigated depth in BH1 and stiff consistency in the upper profile then increasing to very stiff consistency throughout the investigated depth in BH2 at the time of the investigation.

The borehole logs with explanatory notes and DCP test reports are herewith attached.

2.2 Proposed Shed Site 2

BH3 and BH4 represents the proposed shed at the location of Site 2. The borehole investigation revealed that the site is generally underlain by fill comprising low plasticity sandy clayey silt to 0.1m in BH1 and BH2 overlying natural alluvial material comprising low and medium plasticity sandy clay (in BH3 only) and high plasticity clays, extending to the borehole termination depth at 4.0m in BH3 and BH4. The fill material encountered across the site appeared to have been placed "moderately compacted" and "uncontrolled".

The moisture condition of the underlying natural alluvial clay-based material was generally les than plastic limit in the upper profile and less than plastic limit in the lower profile in BH3 and greater than plastic limit throughout the investigation depth in BH4 at the time of the investigation. No seepage was encountered within the investigated depth during the course of the drilling. It should however be noted that the water table level could fluctuate with changes to the season, temperature and rainfall.

As per the DCP test results and visual observation of the resistance by auger TC bit, the underlying natural alluvial clay-based material is assessed to be generally very stiff to hard consistency throughout the investigated depth in BH3 and firm to stiff consistency in the upper profile to 0.6m

then increasing to stiff to very stiff and very stiff consistency with depth throughout the investigated depth in BH4 at the time of the investigation.

The borehole logs with explanatory notes and DCP test reports are herewith attached.

3.0 Laboratory Testing

To confirm and evaluate the results of the fieldwork, laboratory tests were carried out on the recovered soil samples from the boreholes. The laboratory tests included field moisture content (FMC) determination and linear shrinkage (LS) tests and they were carried out at our NATA accredited testing laboratory in Wagga Wagga, NSW. The test report is herewith attached. The FMC and LS test results are also incorporated in the respective borehole logs.

4.0 Site Preparation and Earthworks

The fill material encountered across the site appeared to have been placed "uncontrolled" and therefore considered "not suitable" to use as subgrade or foundation of any structure in its current state unless it is proven to be "controlled fill" and "well" compacted throughout. We therefore recommend excavation of this material and replace and re-compact with approved fill material in such a way that it achieves a minimum of 98% of Standard Maximum Dry Density (SMDD) if it is to be used as subgrade and foundation for the proposed construction.

It should be noted that if a deep footing system, such as deep pad footing or pile footing system is to be adopted and the slab is to be suspended on the footing system, then the removal of the existing fill material may not be required.

In general, **if the slab is not to be fully suspended**, the following site preparation is recommended as required once the fill and unsuitable materials, if any, are removed and cuts if required are undertaken.

- Remove topsoil, fill, and unsuitable material including silt-based material, if any, and stockpile for later use as appropriate. An average stripping depth of 0.15m to 0.2m is anticipated for topsoil (BH1 & BH2 only) and 0.2m to 0.35m for fill material at the locations of BH1 and BH2 (proposed shed 1) and 0.1m for fill material at the location of BH3 and BH4 (proposed shed 2).
- The exposed natural subgrade should then be scarified to a depth of about 200mm; moisture conditioned to within +2% of Standard Optimum Moisture Content (SOMC) and compacted to a minimum of 98% of Standard Maximum Dry Density (SMDD) or 75% of Density Index.
- Proof roll the exposed natural material using a minimum of 10 passes of 12 tonne dead weight roller to detect any soft, loose or heaving areas. It should be noted the natural clay-based material was noted to be firm to stiff consistency in the upper profile to a depth of approximately 0.6m in BH4 at the time of the investigation (refer to attached borehole logs). It should be noted that surface movement on the firm to stiff consistency subgrade material may be experienced during the construction. This material should be

3

removed and or treated as required prior to the placement of any fill material during the construction.

- Any soft, loose or heave areas, if detected, should be excavated down and backfilled with appropriate approved materials, compacted in 150mm thick layers to the equivalent density of minimum 98% of SMDD. It should be noted that the depth and location of the affected subgrade material may be varied across the site depending on the climatic condition at the time of the construction.
- Any area of exposed subgrade, which exhibits shrinkage cracking and does not require recompaction, should be watered and rolled until the shrinkage cracks do not reappear. During this undertaking, care should be exercised to ensure the surface does not become soft.

Subsequent to the above subgrade preparation, clean approved fill preferably granular material can be placed as required and compacted to the compaction requirements as given above. Any excavated fill material, if undertaken, may be used provided any organic matter and unsuitable materials are completely removed. The degree of compaction of any fill placement should be verified by a NATA accredited testing authority to ensure that it achieves specified density as specified above. The boundaries of the fill areas should be sloped to a maximum batter of 1.0 Vertical to 2.0 Horizontal or retained with the retaining wall as appropriate.

The structural fill supporting any structural element of the structures shall be prepared in such a way that it achieves a minimum of 98% of Standard Maximum Dry Density in every 150mm thick compacted layers and certified by a relevant NATA accredited testing laboratory for which a safe allowable bearing pressure of 100kPa may be adopted, provided proper drainage measures are incorporated in the design, during and after the construction.

It is highly recommended the construction of fill pads be undertaken under Level 1 supervision in accordance with "AS3798 – 2007 – Guidelines on earthworks for commercial and residential developments" if the fill pads are to be used for the foundation of any structure of the proposed shed developments.

5.0 Footing Design and Foundation

5.1 Proposed Shed Site 1 (BH1 & BH2)

Based on the field and laboratory investigation, the calculated characteristic surface movement (y_s) values noted to be above 85mm and therefore the site for the proposed shed at site 1 (BH1 & BH2) shall be classified as **"E-D – Extremely reactive deep drying"** in accordance with the Australian Standard AS 2870 - 2011 "Residential Slab and Footings". The footing system may be founded on the prepared subgrade as specified in Section 4.0 or into natural ground.

The shallow footing system such as deep edge beam or pad and strip footings may be adopted and they may be proportioned for a maximum allowable bearing pressure of 100kPa and a subgrade reaction modulus (k) of 30kPa/mm founded on the natural stiff consistency or better clay-based

material at or below a depth of 0.35m in BH1 and BH2 measured from the existing surface level (refer to attached borehole logs) or on "controlled fill" subgrade, prepared as specified in Section 4.0 provided **proper drainage measures are incorporated during and after the construction**.

The deep pad footing system, if adopted, may be taken into the underlying very stiff consistency or better clay-based material at or below a depth of 0.8m in BH1 and BH2 measured from the existing surface level (refer to attached borehole logs) as required and the footing system may be proportioned for an allowable end bearing pressure of 200kPa.

The bored and cast-in-place pile footing system, if adopted, should be taken into the underlying natural very stiff consistency or better clay-based material at or below a depth of 2.0m measured from the existing surface as required and the footing system may be proportioned for an allowable end bearing pressure of 250kPa and an allowable shaft adhesion of 25kPa within the clay-based formation. The average skin friction of 20kPa and the average undrained shear strength of 60kPa with the clay-based formation may also be adopted. The skin friction within the top 1.0m depth of natural soil and within structural fill, if any, shall be ignored.

5.2 Proposed Shed Site 2 (BH3 & BH4)

Based on the field and laboratory investigation, the calculated characteristic surface movement (y_s) values noted to be above 85mm and therefore the site for the proposed shed at site 2 (BH3 & BH4) shall be classified as **"E-D – Extremely reactive deep drying"** in accordance with the Australian Standard AS 2870 - 2011 "Residential Slab and Footings". The footing system may be founded on the prepared subgrade as specified in Section 4.0 or into natural ground.

The shallow footing system such as deep edge beam or pad and strip footings may be adopted and they may be proportioned for a maximum allowable bearing pressure of 100kPa and a subgrade reaction modulus (k) of 30kPa/mm founded on the natural stiff consistency or better clay-based material at or below a depth of 0.2m in BH3 and 0.6m in BH4 measured from the existing surface level (refer to attached borehole logs) or on "controlled fill" subgrade, prepared as specified in Section 5.0 provided proper drainage measures are incorporated during and after the construction.

The deep pad footing system, if adopted, may be taken into the underlying very stiff consistency or better clay-based material at or below a depth of 1.0m in BH3 and BH4 measured from the existing surface level (refer to attached borehole logs) as required and the footing system may be proportioned for an allowable end bearing pressure of 200kPa.

The bored and cast-in-place pile footing system, if adopted, should be taken into the underlying natural very stiff consistency or better clay-based material at or below a depth of 2.0m measured from the existing surface as required and the footing system may be proportioned for an allowable end bearing pressure of 250kPa and an allowable shaft adhesion of 25kPa within the clay-based formation. The average skin friction of 20kPa and the average undrained shear strength of 60kPa with the clay-based formation may also be adopted. The skin friction within the top 1.0m depth of natural soil and within structural fill, if any, shall be ignored.

5.3 Footing Design and Foundation – General Comment

If the fill placement is required, it is highly recommended to remove the existing topsoil, fill, siltbased material and unsuitable material, if any, then place granular fill comprising mainly sand and well graded gravel, but caution shall be exercised not to select a 'raw' or non-plastic material that may induce erosion. It should be noted that the clay-based soils are subject to saturation and shrink/swell problems. **The fill shall be placed in accordance with clause 6.4.1 & 6.4.2 of AS2870, or otherwise the site classification shall be reviewed.**

Care would be required to ensure the bases of the pile shafts and footings must be clean and free of soft, remoulded and loose material and the sides of bored pier holes where side adhesion is adopted must be free of smear prior to concreting. To achieve this, bases of bored pier holes should be cleaned using a cleaning bucket and the sides of the pile holes should be roughed to remove the smear zone associated with drilling, or the side adhesion values given above should be reduced by 50%. Some localized seepage or pile wall instability requiring temporary liners may be expected within natural materials during the footing excavation.

If uplift forces are to be assessed, the allowable side resistance on the footing system may be taken as equivalent to 50% of the allowable side adhesion values given above.

The slab panel, internal beams and load support thickening may be founded on the natural ground or prepared fill subgrade as specified in Section 4.0 as required. The ground slab may either be suspended on the footing system or by ground bearing slab if required. For the latter, we recommend that the structure be supported on a stiffened raft placed on the natural ground or prepared fill subgrade, comprising a grid of reinforced beam cast integrally with the floor slab, with load bearing beams thickened to extend to the clay stratum as required in order to minimise the risk of significant damage from the reactive clay foundation. The maximum edge beam pressure of the stiffened raft slab should not exceed the allowable bearing capacity of the underlying natural clay-based foundation or prepared fill foundation of 100kPa.

A minimum of 150 mm thick of approved granular fill materials should be placed on the prepared subgrade before the construction of the slab to cater surface movements, such as shrink/swell movements as the natural clay-based materials are considered extremely reactive.

The footing excavations should not be left exposed for prolonged periods as deterioration of footing bases may occur when subjected to wetting and drying processes. Care should be exercised during construction to ensure water ponding does not occur since this may lead to subsequent softening of the founding materials. Groundwater seepage may be encountered in the footing excavation. Any such seepage should be readily controllable by conventional sump and pump dewatering systems installed at the base of the excavation as appropriate. The footing excavations shall be cleared off the debris and ponding water prior to the placement of the concrete in order to adopt the above recommended bearing pressures.

If water ponds in the base of footings or the base founding materials are affected by moisture ingress, then this material should be excavated to expose the natural subgrade, which has not been exposed to moisture, and pour the concrete immediately. If a delay in pouring the concrete is anticipated, then a blinding layer should be placed over the base of the footing to prevent softening of the footing base.

It is highly recommended to incorporate proper drainage measures around the perimeter of the structure to ensure surface run-off does not ingress into the founding material.

It is also highly recommended to undertake inspections of the footing construction by an experienced geotechnical engineer to ensure that the specified allowable bearing capacity is achieved for the footing system during the construction.

6.0 Site Sub-Soil Class – Earthquake Design

The site sub-soil class in accordance with Section 4.2 of AS1170.4-2007 "Part 4: Earthquake actions in Australia", is assessed to be "Class C_{e} - Shallow soil site".

7.0 General Comment

Occasionally, the subsurface soil conditions within the site may be found different (or may be interpreted to be different) from those expected. This can also occur with groundwater conditions, especially after climatic changes. If such differences appear to exist, we recommend that you immediately contact us.

Should you have any queries, please do contact us.

Yours Faithfully,

Attachments:

Jarrod Gornall Senior Geotechnical Engineer

Tin Maung Principal Geotechnical Engineer

• Addendum

- Plan showing site location
- Plan showing borehole & DCP test locations
- Borehole logs with Explanatory Notes
- Dynamic Cone Penetrometer test reports
- Laboratory test report

ADDENDUM

LIMITS OF INVESTIGATION

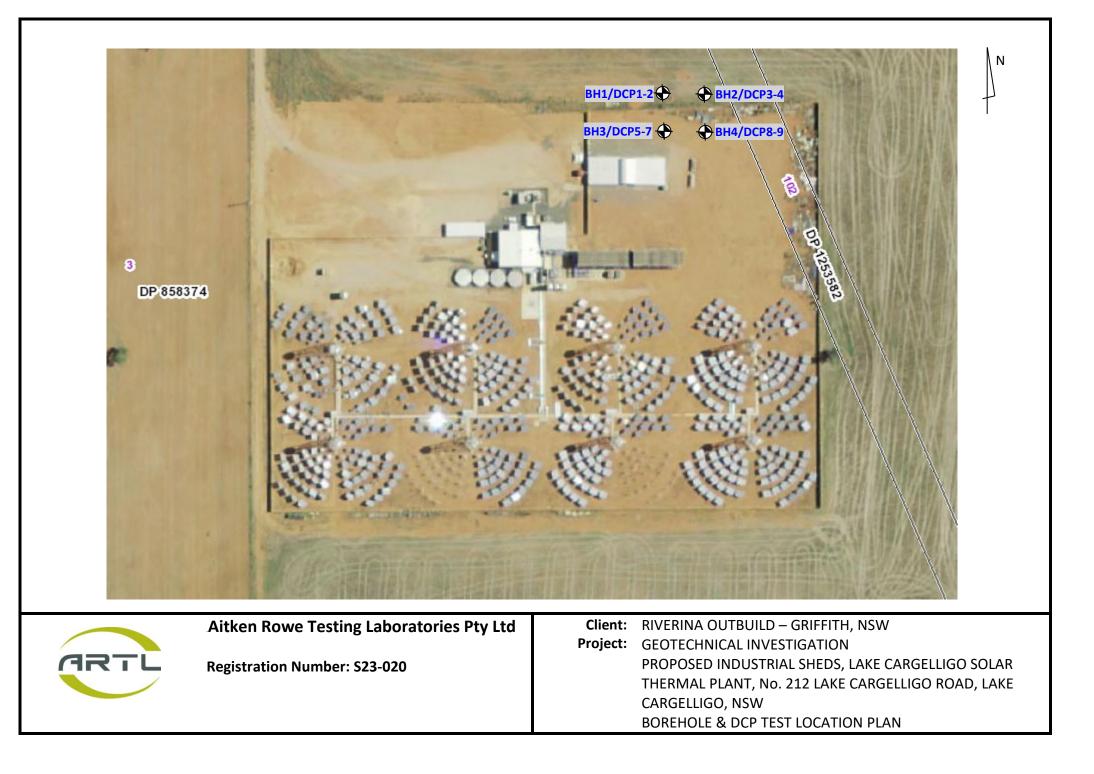
The recommendations made in this report are based on the assumption that the test results are representative of the overall subsurface conditions. However, it should be noted that even under optimum circumstances, actual conditions in some parts of the building site may differ from those said to exist, because no geotechnical engineer, no matter how qualified, and no subsurface exploration program, no matter how comprehensive, can reveal all that is hidden by earth, rock and time.

The client should also be aware that our recommendations refer only to our test site locations and the ground level at the time of testing.

The recommendations in this report are based on the following: -

- a) The information gained from our investigation.
- b) The present "state of the art" in testing and design.
- c) The building type and site treatment conveyed to us by the client.
- d) Historical Information

Should the client or their agent have omitted to supply us with the correct relevant information, or make significant changes to the building type and/or building envelope, our report may not take responsibility for any consequences and we reserve the right to make an additional charge if more testing is necessary.


Not withstanding the recommendations made in this report, we also recommend that whenever footings are close to any excavations or easements, that consideration should be given to deepening the footings.

Unless otherwise stated in our commission, any dimensions or slope direction and magnitude should not be used for any building costing calculations and/or positioning. Any sketch supplied should be considered as only an approximate pictorial evidence of our work.

	Aitken Rowe Testing Laboratories Pty Ltd	Client:	RIVERINA OUTBUILD – GRIFFITH, NSW
		Project:	GEOTECHNICAL INVESTIGATION
ARTL	Registration Number: S23-020		PROPOSED INDUSTRIAL SHEDS, LAKE CARGELLIGO SOLAR
			THERMAL PLANT, No. 212 LAKE CARGELLIGO ROAD, LAKE
			CARGELLIGO, NSW
			SITE LOCATION PLAN

N

	AITKEN ROWE TESTING LABOR	AIUK	IES P	IYLI	D		Bore S	heet No.: 1 of 1			
		Ground L Method:			n TC Bit		Date: 1/02/2023 GPS N: 6314144 E: 0445111				
Symbol	Description	Depth (m)	Moisture Condition	Consistency/ Rel. Density	San	nple	Lab. Test	Remarks & Field Records			
USCS		Dep	Cor	Cons Rel.	Туре	No.	L.S % -425μm				
ML	FILL/TOPSOIL: Sandy Clayey SILT; low plasticity, fine to coarse sand, grey brown	_	MC>PL	VS	D	1A		FILL; Appears poorly compacted 'Uncontrolled'			
CL	FILL: Sandy Silty CLAY; low plasticity, fine to coarse sand, red grey brown			F-St.	D	1B					
СН	CLAY; high plasticity, with fine to coarse sand, trace gravel, orange	0.5		VSt.	D	1C	18.0	NATURAL FMC = 20.6%			
СН	CLAY; high plasticity, with fine to coarse sand, trace gravel,										
CIT	orange brown	 1.5									
					D	1D	18.5				
		2.0			D	1E	18.0				
СН	CLAY; high plasticity, trace sand, orange brown	 									
en	clear, high plasticity, trace saild, orange brown	2.5				45	10.5				
					D	1F	18.5				
		3.0									
		-									
		3.5									
					D	1G	18.5				
		F									
	End of Borehole (BH1) @ 4.0m	4.0									
	Registration No.: S23-020							Logged By: T.L			
	- Location: Geotechnical Investigation - Proposed Industric Lake Cargelligo Road, Lake Cargelligo, NSW	al Sheds, Lo	ake Carge	elligo Sola	ır Thermo	al Plant,	No. 212	Scale: As shown			
	Lake Cargenigo Road, Lake Cargenigo, NSW Client: Riverina Outbuild - Griffith, NSW										

	AITKEN ROWE TESTING LABOR	ΔΤΟΒ		туіт	D			Form R5 V2 20/07/2021 Borehole No.: 2			
							S	heet No.: 1 of 1			
		Ground L			TC Bit			Date: 1/02/2023 GPS N: 6314146			
		Method: Auger Drilling with TC Bit						E: 0445135			
0							Test				
дшу		(u	ture tion	ency	Sam	nple	Lab. 7				
USCS Symbol	Description	Depth (m)	Moisture Condition	Consistency/ Rel. Density			 L.S %	Remarks & Field Records			
US			2 0	C Co	Туре	No.	-425µm				
ML	FILL/TOPSOIL: Sandy Clayey SILT; low plasticity, fine to		MC>PL	S				FILL; Appears poorly compacted			
CL	coarse sand, grey brown FILL: Sandy Silty CLAY; low plasticity, fine to coarse sand, red grey brown							'Uncontrolled' (Saturated)			
CI	Sandy CLAY; medium plasticity, fine to coarse sand, with	_		St.				NATURAL			
	fine to medium gravel, orange brown	_			D	2A					
		0.5									
		<u> </u>									
СН	CLAY; high plasticity, with fine to coarse sand, trace gravel,	_		VSt.							
	orange brown	—			D	2B					
		1.0									
		-									
		_									
СН	CLAY; high plasticity, with fine to coarse sand, with fine to										
	coarse gravel, orange brown	1.5									
		_			D	2C					
СН	CLAY; high plasticity, trace sand, orange brown	2.0									
		_									
		_			D	2D					
		_									
		L									
		2.5									
		_									
		—									
		_									
		3.0									
		_									
		Ľ			D	2E					
		L									
		3.5									
		_									
		 _									
		F									
		\vdash									
	End of Borehole (BH2) @ 4.0m	4.0									
	Registration No.: S23-020							Logged By: T.L			
	Location: Geotechnical Investigation - Proposed Industric	ıl Sheds, L	ake Carge	elligo Sola	ır Thermo	al Plant, I	No. 212	Scale: As shown			
	Lake Cargelligo Road, Lake Cargelligo, NSW										
	Client: Riverina Outbuild - Griffith, NSW							Dry on completion			

	AITKEN ROWE TESTING LABOR	D			Form R5 V2 20/07/2021 Phole No.: 3			
		Ground L					S	heet No.: 1 of 1 Date: 1/02/2023
		Method:			h TC Bit			GPS N: 6314127
								E: 0445109
USCS Symbol	Description	Depth (m)	Moisture Condition	Consistency/ Rel. Density	Sam	nple	S Lab. Test	Remarks & Field Records
nso		Ω	< U	Col	Туре	No.	-425µm	
ML	FILL: Sandy Clayey SILT; low plasticity, fine to coarse sand, with fine to coarse gravel. orange		MC <pl< th=""><th>VStH</th><th>D</th><th>3A</th><th></th><th>FILL: Appears moderately compacted 'Uncontrolled'</th></pl<>	VStH	D	3A		FILL: Appears moderately compacted 'Uncontrolled'
CL	Sandy CLAY; low plasticity, fine to coarse sand, trace gravel, orange brown	_			D	3B		NATURAL
CI	Sandy CLAY; medium plasticity, fine to coarse sand, with				D	3C		
	fine to medium gravel, brown red	0.5						
СН	CLAY; high plasticity, with fine to coarse sand, with fine to medium gravel, orange brown							
		1.0			D	3D		
		_						
		F						
		1.5			D	3E		
		E						
		F						
СН	CLAY; high plasticity, with fine to coarse sand, with fine to medium gravel, red brown	2.0						
		–			D	3F		
		_						
СН	CLAY; high plasticity, with fine to coarse sand, with fine	2.5						
	to medium gravel, brown	_			D	3G		
СН	CLAY; high plasticity, trace sand, trace gravel, grey brown	F	MC>PL					
		3.0						
		┝						
					D	ЗH		
		3.5						
		_						
		F						
		4.0						
	End of Borehole (BH3) @ 4.0m Registration No.: S23-020							Logged By: T.L
	Location: Geotechnical Investigation - Proposed Industric Lake Cargelligo Road, Lake Cargelligo, NSW	al Sheds, Lo	ake Carge	elligo Sola	ar Thermo	al Plant, I		Scale: As shown
	Client: Riverina Outbuild - Griffith, NSW							Dry on completion

	AITKEN ROWE TESTING LABOR		IEC D	туіт			Bore	Form R5 V2 20/07/2021 Phole No.: 4			
	ATTREN NOWL TESTING LABOR						S	Sheet No.: 1 of 1			
		Ground L			TC 021			Date: 1/02/2023			
		Method:	Auger Dr	ning with	i i C Bit			GPS N: 6314131 E: 0445135			
0				\ .			Test	2. 0440100			
USCS Symbol		(Ľ	Moisture Condition	Consistency/ Rel. Density	San	nple	Lab. T				
SS	Description	Depth (m)	Moisture Condition	nsist I. De			ے L.S %	Remarks & Field Records			
nsc		ā	ن 2	Col	Туре	No.	-425μm				
ML	FILL: Sandy Clayey SILT; low plasticity, fine to coarse sand, with fine to coarse gravel, orange brown		MC>PL	S	D	4A	1204111	FILL: Appears moderately compacted			
СН	CLAY; high plasticity, with fine to coarse sand, trace gravel,	–		F-St.		1		'Uncontrolled' NATURAL			
CII	brown	F		1 50.	D	4B	16.0				
		-				1					
СН	CLAY; high plasticity, with fine toc oarse sand, trace gravel,	0.5									
	yellow orange brown	_			_	1		FMC = 27.2%			
	/	-		StVSt.	D	4C	17.0				
		—				1					
СН	CLAY; high plasticity, with fine to coarse sand, orange	T									
	brown	1.0									
					D	4D	17.5				
					U	40	17.5				
		1.5									
СН	CLAY; high plasticity, trace sand, orange brown			VSt.							
					D	4E	17.0				
							-				
		2.0									
		L									
		L									
		L									
		L									
		2.5									
		–									
		 									
СН	CLAY; high plasticity, trace sand, brown	–				1					
		-			D	4F	19.0				
		3.0				1					
		-									
		-									
		-									
		3.5				1					
					D	4G	19.0				
					h	1					
		Γ									
		Γ									
		4.0									
	End of Borehole (BH4) @ 4.0m										
	Registration No.: S23-020							Logged By: T.L			
	Location: Geotechnical Investigation - Proposed Industric	al Sheds, Lo	ake Carge	elligo Sola	ır Therm	al Plant,	No. 212	Scale: As shown			
	Lake Cargelligo Road, Lake Cargelligo, NSW										
	Client: Riverina Outbuild - Griffith, NSW							Dry on completion			

AITKEN ROWE TESTING LABORATORIES PTY LTD

LOG SYMBOLS

LOG COLUMN	SYMBOL		DEFINITION									
Groundwater	_	Standing water level. Time delay fo	ing water level. Time delay following completion of drilling may be shown.									
Record		Groundwater seepage into borehol	e or excavation noted during drilling	or excavation.								
Complete	D	Disturbed bag sample taken betwee	be approx. equal to plastic limit. be greater than plastic limit. rs. rs. ro free water visible on soil surface. surface. essive strength less than 25kPa. strength 25-50 kPa. strength 50-100kPa.									
Samples	U	Undisturbed 50mm diameter tube :	sample taken between the depths in	dicated by lines								
Field Tests	4, 7, 10 N=17											
Field Tests	5 7 3			•								
Moisture	MC <pl< td=""><td>Moisture content estimated to be lo</td><td>ess than plastic limit.</td><td></td></pl<>	Moisture content estimated to be lo	ess than plastic limit.									
Condition (Silt or Clay	MC=PL	Moisture content estimated to be a	pprox. equal to plastic limit.									
based)	MC>PL	Moisture content estimated to be g	reater than plastic limit.									
Moisture	D	DRY – runs freely through fingers.										
Condition (Gravel or	м	MOIST – does not run freely but no	free water visible on soil surface.									
Sand based)	w	WET – free water visible on soil sur	face.									
	vs	VERY SOFT – unconfined compressi	ve strength less than 25kPa.									
	s	SOFT – unconfined compressive str	ength 25-50 kPa.									
Consistency	F	FIRM – unconfined compressive str	ength 50-100kPa.									
(Silt or Clay based)	St.	STIFF – unconfined compressive str	ength 100-200kPa.									
	VSt.	VERY STIFF – unconfined compressi	ve strength 200-400kPa.									
	н	HARD – unconfined compressive st	rength greater than 400kPa.									
		Description	Density Index Range %	'N' Value Range Blows/300mm								
Relative	VL	VERY LOOSE	<15	0-5								
Density (Gravel or	L	LOOSE	15-35	6-10								
Sand based)	MD	MEDIUM DENSE	35-65	11-30								
	D	DENSE	65-85	31-60								
	VD	VERY DENSE	>85	>60								
Hand Penetrometer Readings	300 250 280	Numbers indicate individual test re	sults in kPa on representative undist	urbed material.								
	L.S. %	Linear Shrinkage (As per TfNSW Me	thod T113)									
Laboratory Test	M.C. %	Field Moisture Content (As per Aust	tralian Standard AS1289.2.1.1 or TfN	SW Method T120)								
	lss	Shrink-Swell Index (As per Australia	n Standard AS1289.7.1.1)									
	Fill		Piezometer									
Piezometer Construction		Bentonite	Solid Pipe									
		Washed Fine Graded Gravel	Slotted Scre	en								
	'V' bit	Hardened steel 'V' shaped bit.										
Remarks												

		/									
CLIENT:	RIVFRINA	OUTBUID -	GRIFFITH, N						1 OF: 9) [DCP: 1 (BH1)
	T: GEOTECH) INDUSTRI	AL SHEDS,			RATION NO		
			R THERMAL			,			TE OF TEST		3
LOCATIO	N: No. 212 L	AKE CARGEI	LIGO ROAD	, LAKE CAR	GELLIGO, N	SW	DE	PTH BELO	N ESL (mm)	: NIL	
SOIL DES	SCRIPTION:	REFER TO	BOREHOLE	LOGS			Ν	NOISTURE	CONDITION	: REFER TC	LOGS
	I	DEPTH OF GR	OUND WATE	R TABLE IF IN	NTERSECTED	: N/A	TES	T METHOD	: AS 1289.6	.3.2	
Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR
0.0 - 0.1	1 1	1	1.5 - 1.6	*	*	3.0 - 3.1	*	*	4.5 - 4.6	*	*
0.1 - 0.2	2	-	1.6 - 1.7	*	*	3.1 - 3.2	*	*	4.6 - 4.7	*	*
0.2 - 0.3		3	1.7 - 1.8	*	*	3.2 - 3.3	*	*	4.7 - 4.8	*	*
0.3 - 0.4		9	1.8 - 1.9	*	*	3.3 - 3.4	*	*	4.8 - 4.9	*	*
0.4 - 0.5		23	1.9 - 2.0	*	*	3.4 - 3.5	*	*	4.9 - 5.0	*	*
0.5 - 0.6		25 28	2.0 - 2.1 2.1 - 2.2	*	*	3.5 - 3.6 3.6 - 3.7	*	*	5.0 - 5.1 5.1 - 5.2	*	*
0.6 - 0.7		28	2.1 - 2.2	*	*	3.6 - 3.7 3.7 - 3.8	*	*	5.1 - 5.2	*	*
0.7 - 0.8		*	2.2 - 2.3	*	*	3.8 - 3.9	*	*	5.3 - 5.4	*	*
0.9 - 1.0		*	2.4 - 2.5	*	*	3.9 - 4.0	*	*	5.4 - 5.5	*	*
1.0 - 1.1		*	2.5 - 2.6	*	*	4.0 - 4.1	*	*	5.5 - 5.6	*	*
1.1 - 1.2		*	2.6 - 2.7	*	*	4.1 - 4.2	*	*	5.6 - 5.7	*	*
1.2 - 1.3		*	2.7 - 2.8	*	*	4.2 - 4.3	*	*	5.7 - 5.8	*	*
1.3 - 1.4	4 *	*	2.8 - 2.9	*	*	4.3 - 4.4	*	*	5.8 - 5.9	*	*
1.4 - 1.5	5 *	*	2.9 - 3.0	*	*	4.4 - 4.5	*	*	5.9 - 6.0	*	*
	0		10	20	Cun	nulative Blo	ows	40	50		60
	0										
Depth (mm)	300 400 500 600 700 800										
	900										
		Accredit	ed for compli	ance with	REMARKS:						
WORL	ATA D RECOGNISED REDITATION	ISO/IEC 2	17025 - Testir	ng.	,	APPROVED S			J Gornall		
					1						
ACCI	REDITATION						DATE:	20/0	2/2023		

		/				IETROME					
CLIENT:	RIVFRINA	OUTBUID - (2 OF: 9)	DCP: 2 (BH1)
		NICAL INVES	-		DINDUSTRI/	AL SHEDS.			RATION NO		
		SELLIGO SOLA				,			TE OF TEST		.3
LOCATION	I: No. 212 L	AKE CARGEL	LIGO ROAD	, LAKE CAR	GELLIGO, N	SW	DE	PTH BELOV			
SOIL DES	CRIPTION:	REFER TO	BOREHOLE	LOGS			ſ	MOISTURE (CONDITION	: REFER TO) LOGS
		DEPTH OF GR	OUND WATE	R TABLE IF II	NTERSECTED	: N/A	TES	T METHOD	: AS 1289.6	.3.2	
Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR
0.0 - 0.1	12	28	1.5 - 1.6	*	*	3.0 - 3.1	*	*	4.5 - 4.6	*	*
0.1 - 0.2	15	38	1.6 - 1.7	*	*	3.1 - 3.2	*	*	4.6 - 4.7	*	*
0.2 - 0.3	17	44	1.7 - 1.8	*	*	3.2 - 3.3	*	*	4.7 - 4.8	*	*
0.3 - 0.4	12	28	1.8 - 1.9	*	*	3.3 - 3.4	*	*	4.8 - 4.9	*	*
0.4 - 0.5	8	17	1.9 - 2.0	*	*	3.4 - 3.5	*	*	4.9 - 5.0	*	*
0.5 - 0.6	8	17	2.0 - 2.1	*	*	3.5 - 3.6	*	*	5.0 - 5.1	*	*
0.6 - 0.7	11	25	2.1 - 2.2	*	*	3.6 - 3.7	*	*	5.1 - 5.2	*	*
0.7 - 0.8	10	23	2.2 - 2.3	*	*	3.7 - 3.8	*	*	5.2 - 5.3	*	*
0.8 - 0.9	9	20	2.3 - 2.4	*	*	3.8 - 3.9	*	*	5.3 - 5.4	*	*
0.9 - 1.0	11	25	2.4 - 2.5	*	*	3.9 - 4.0	*	*	5.4 - 5.5	*	*
1.0 - 1.1	10	23	2.5 - 2.6	*	*	4.0 - 4.1	*	*	5.5 - 5.6	*	*
1.1 - 1.2	END	*	2.6 - 2.7	*	*	4.1 - 4.2	*	*	5.6 - 5.7	*	*
1.2 - 1.3	*	*	2.7 - 2.8	*	*	4.2 - 4.3	*	*	5.7 - 5.8	*	*
1.3 - 1.4		*	2.8 - 2.9	*	*	4.3 - 4.4	*	*	5.8 - 5.9	*	*
1.4 - 1.5			2.9 - 3.0			4.4 - 4.5			5.9 - 6.0		
	0	20		40	60		80	100		120	140
	200										
	400				$ \rightarrow $						
Ê											
Ē	600										
oth	000						_				
Depth (mm)											
	800							$\overline{}$			
	1000								\rightarrow		
	1200										
					REMARKS:						
		A corrective	d for come!	2000							
			ed for compli 7025 - Testir						A State		
N	ATA	ISU/IEC I	1020 - 18511	'б·				u 🍰			
		ACCREDI	TATION NUM	1BER:				: V			
		4679			4	APPROVED S	GNATORY	: Jarrod	Gornall		
WORLD	RECOGNISED					-					
	EDITATION						DATE:	20/0	2/2023		
								R13 V6 23/			

CLIENT:	RIVFRINA	OUTBUID - (3 OF: 9) [) CP: 3 (BH2)
	GEOTECH		-			AL SHEDS.			RATION NO		
		ELLIGO SOLA				0 0,			E OF TEST		3
LOCATION	: No. 212 LA				GELLIGO, N	SW	DE	PTH BELOV			
	CRIPTION:				,			MOISTURE (LOGS
	C	EPTH OF GR	OUND WATE	R TABLE IF II	NTERSECTED	N/A	TES	T METHOD:	AS 1289.6	.3.2	
Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR
0.0 - 0.1	1	1	1.5 - 1.6	*	*	3.0 - 3.1	*	*	4.5 - 4.6	*	*
0.1 - 0.2	1	1	1.6 - 1.7	*	*	3.1 - 3.2	*	*	4.6 - 4.7	*	*
0.2 - 0.3	7	14	1.7 - 1.8	*	*	3.2 - 3.3	*	*	4.7 - 4.8	*	*
0.3 - 0.4	6	12	1.8 - 1.9	*	*	3.3 - 3.4	*	*	4.8 - 4.9	*	*
0.4 - 0.5	5	9	1.9 - 2.0	*	*	3.4 - 3.5	*	*	4.9 - 5.0	*	*
0.5 - 0.6	7	14	2.0 - 2.1	*	*	3.5 - 3.6	*	*	5.0 - 5.1	*	*
0.6 - 0.7	15	38	2.1 - 2.2	*	*	3.6 - 3.7	*	*	5.1 - 5.2	*	*
0.7 - 0.8	15	38	2.2 - 2.3	*	*	3.7 - 3.8	*	*	5.2 - 5.3	*	*
0.8 - 0.9	END *	*	2.3 - 2.4	*	*	3.8 - 3.9	*	*	5.3 - 5.4	*	*
0.9 - 1.0	*	*	2.4 - 2.5	*	*	3.9 - 4.0	*	*	5.4 - 5.5	*	*
1.0 - 1.1 1.1 - 1.2	*	*	2.5 - 2.6	*	*	4.0 - 4.1 4.1 - 4.2	*	*	5.5 - 5.6 5.6 - 5.7	*	*
1.1 - 1.2	*	*	2.6 - 2.7 2.7 - 2.8	*	*	4.1 - 4.2	*	*	5.6 - 5.7	*	*
1.2 - 1.3	*	*	2.7 - 2.8	*	*	4.2 - 4.3	*	*	5.8 - 5.9	*	*
1.3 - 1.4	*	*	2.8 - 2.9	*	*	4.3 - 4.4	*	*	5.9 - 6.0	*	*
	0		10	20	Cun	nulative Blo	ws	40	50		60
	0		10	20		30		40	50		60
Depth (m	100 200 300 400 500 600 700 800										
	900	Accredite	ed for compli	ance with	REMARKS:						
WORLD	RECOGNISED	ISO/IEC 1	7025 - Testir	ıg.		APPROVED S	GIGNATORY: DATE:		Gornall		
							L .	R13 V6 23/			

		,									
CLIENT:	RIVERINA	OUTBUID -							4 OF: 9) /	DCP: 4 (BH2)
	GEOTECH		-			AL SHEDS.			RATION NO		
		ELLIGO SOLA				12 011200)			TE OF TEST		3
OCATION	: No. 212 L				GELLIGO, N	SW	DI	EPTH BELOV			-
		REFER TO			,			MOISTURE	. ,		LOGS
	[DEPTH OF GR	OUND WATE	R TABLE IF II	NTERSECTED	: N/A	TES	T METHOD	: AS 1289.6	.3.2	
Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR
0.0 - 0.1	8	17	1.5 - 1.6	*	*	3.0 - 3.1	*	*	4.5 - 4.6	*	*
0.1 - 0.2	9	20	1.6 - 1.7	*	*	3.1 - 3.2	*	*	4.6 - 4.7	*	*
0.2 - 0.3	7	14	1.7 - 1.8	*	*	3.2 - 3.3	*	*	4.7 - 4.8	*	*
0.3 - 0.4	9	20	1.8 - 1.9	*	*	3.3 - 3.4	*	*	4.8 - 4.9	*	*
0.4 - 0.5	8	17	1.9 - 2.0	*	*	3.4 - 3.5	*	*	4.9 - 5.0	*	*
0.5 - 0.6	9	20	2.0 - 2.1	*	*	3.5 - 3.6	*	*	5.0 - 5.1	*	*
0.6 - 0.7	END	*	2.1 - 2.2	*	*	3.6 - 3.7	*	*	5.1 - 5.2	*	*
0.7 - 0.8	*	*	2.2 - 2.3	*	*	3.7 - 3.8	*	*	5.2 - 5.3	*	*
0.8 - 0.9	*	*	2.3 - 2.4	*	*	3.8 - 3.9	*	*	5.3 - 5.4	*	*
0.9 - 1.0	*	*	2.4 - 2.5	*	*	3.9 - 4.0	*	*	5.4 - 5.5	*	*
1.0 - 1.1	*	*	2.5 - 2.6	*	*	4.0 - 4.1	*	*	5.5 - 5.6	*	*
1.1 - 1.2	*	*	2.6 - 2.7	*	*	4.1 - 4.2	*	*	5.6 - 5.7	*	*
1.2 - 1.3	*	*	2.7 - 2.8	*	*	4.2 - 4.3	*	*	5.7 - 5.8	*	*
1.3 - 1.4 1.4 - 1.5	*	*	2.8 - 2.9 2.9 - 3.0	*	*	4.3 - 4.4 4.4 - 4.5	*	*	5.8 - 5.9 5.9 - 6.0	*	*
					Cun	nulative Blo	ows			4	4
			10					10			
	0		10	20		30		40	50		60
	200										
(mm)	300										
Depth (mm)	400						$\overline{}$				
	500							\searrow			
	600								\searrow		
	700										
		Accredite	ed for compli	ance with	REMARKS:						
N \	ATĀ	ISO/IEC 1	TATION NUM	ng.	,	APPROVED S	GIGNATORY	: Jarrod	Gornall		
	RECOGNISED						DATE:	20/0	2/2023		
								R13 V6 23/	03/2022		

DYNAMIC CONE PENETROMETER REPORT CLIENT: RIVERINA OUTBUID - GRIFFITH, NSW PAGE: 5 0.F: 9 PROJECT: GEOTECHNICAL INVESTIGATION - PROPOSED INDUSTRIAL SHEDS, LAKE CARGELLIGO SOLAR THERMAL PLANT PAGE: STATUSTICAL MEGISTRATION NO: LOCATION: No. 212 LAKE CARGELLIGO ROAD, LAKE CARGELLIGO, NSW DEPTH BELOW ESL (mm): DATE OF TEST: SOIL DESCRIPTION: REFER TO BOREHOLE LOGS MOISTURE CONDITION: SEST.CBR Depth(m) 0.0 -0.1 20 55 1.5 - 1.6 * 3.0 - 3.1 * 4.5 - 4.6 0.1 -0.2 END * 1.6 - 1.7 * 3.1 - 3.2 * 4.6 - 4.7 0.2 -0.3 * * 1.7 - 1.8 * 3.2 - 3.3 * 4.7 - 4.8 0.3 -0.4 * 1.8 - 1.9 * 3.3 - 3.4 * 4.9 - 5.0 0.5 -0.6 * 1.9 - 2.0 * 3.6 - 3.7 * 5.1 - 5.2 0.7 -0.8 * 2.2 - 2.3 * 3.7 - 3.8 * 5.2 - 5.5 <td< th=""><th> \$23-020 1/02/202 NIL REFER TC </th><th></th></td<>	 \$23-020 1/02/202 NIL REFER TC 		
PROJECT: GEOTECHNICAL INVESTIGATION - PROPOSED INDUSTRIAL SHEDS, LAKE CARGELLIGO SOLAR THERMAL PLANT REGISTRATION NO: DATE OF TEST: DATE OF TEST: DATE OF TEST: LOCATION: No. 212 LAKE CARGELLIGO ROAD, LAKE CARGELLIGO, NSW DEPTH BELOW ESL (mm): SOIL DESCRIPTION: REFER TO BOREHOLE LOGS MOISTURE CONDITION: DEPTH OF GROUND WATER TABLE IF INTERSECTED: N/A TEST METHOD: AS 1289.6: Depth(m) Blows Est. CBR Depth(m) 0.0 - 0.1 20 55 1.5 - 1.6 * 3.0 - 3.1 * 4.5 - 4.6 0.1 - 0.2 END * 1.6 - 1.7 * 3.1 - 3.2 * 4.6 - 4.7 0.2 - 0.3 * 1.7 - 1.8 * 3.2 - 3.4 * 4.8 - 4.6 0.3 - 0.4 * 1.8 - 1.9 * 3.3 - 3.4 * 4.8 - 5.0 0.5 - 0.6 * 2.0 - 2.1 * 3.6 - 3.7 * 5.1 - 5.2 0.7 - 0.8 2.2 - 2.3 * 3.7 - 3.8 * 5.2 - 5.3 0.6 - 0.7 * 2.3 - 2.4 * 3.8 - 3.9 5	S23-020 1/02/202 NIL REFER TO 3.2 Blows *	23 D LOGS Est. CBR * * * * * * * * * * * * *	
DATE OF TEST: DATE OF TEST: DATE OF TEST: DETH OF GROUND WATER TABLE IF INTERSECTED: N/A TEST METHOD: A S1289.6: MOISTURE CONDITION: DEPTH OF GROUND WATER TABLE IF INTERSECTED: N/A TEST METHOD: AS 1289.6: Depth(m) Blows Est. CBR Depth(m) Blows Est. CBR Depth(m) Blows Est. CBR Depth(m) 0.0-0.1 20 S5 1.5-1.6 * 3.0-3.1 * 4.5-4.6 0.1-0.1 20 S5 1.5-1.6 * 3.0-3.1 * 4.6-4.7 0.1-0.1 20 S5 1.5-1.6 * 4.4-6-4.7 0.1-0.2 S 1.5-1.6 * * * * <th co<="" td=""><td>: 1/02/202 : NIL : REFER TO : 3.2 Blows * * * * * * * * * * * * *</td><td>Est. CBR *</td></th>	<td>: 1/02/202 : NIL : REFER TO : 3.2 Blows * * * * * * * * * * * * *</td> <td>Est. CBR *</td>	: 1/02/202 : NIL : REFER TO : 3.2 Blows * * * * * * * * * * * * *	Est. CBR *
DECATION: No. 212 LAKE CARGELLIGO ROAD, LAKE CARGELLIGO, NSW DEPTH BELOW ESL (mm): SOIL DESCRIPTION: REFER TO BOREHOLE LOGS MOISTURE CONDITION: DEPTH OF GROUND WATER TABLE IF INTERSECTED: N/A TEST METHOD: AS 1289.6.3 DEPTH OF GROUND WATER TABLE IF INTERSECTED: N/A TEST METHOD: AS 1289.6.3 Depth(m) Blows Est. CBR Depth(m) 0.0-0.1 20 55 1.5-1.6 * * 3.0-3.1 * 4.6-4.7 0.1-0.2 END * 1.6-1.7 * 3.1-3.2 * 4.6-4.7 0.2-0.3 * 1.7-1.8 * 3.2-3.3 * 4.6-4.7 0.3-0.4 * 1.8-1.9 * 3.3-3.4 * 4.8-4.9 0.4-0.5 * 1.9-2.0 * 3.4-3.5 * 4.9-5.0 0.5-0.6 * 2.0-2.1 * 3.6-3.7 * 5.1-5.1 0.6-0.7 * 2.2-2.3 * 3.8-3.9 <t< td=""><td>NIL REFER TO 3.2 Blows * * * * * * * * * * * * * * * * * * *</td><td>Est. CBR *</td></t<>	NIL REFER TO 3.2 Blows * * * * * * * * * * * * * * * * * * *	Est. CBR *	
SOIL DESCRIPTION: REFER TO BOREHOLE LOGS MOISTURE CONDITION: DEPTH OF GROUND WATER TABLE IF INTERSECTED: N/A TEST METHOD: AS 1289.6.3 Depth(m) Blows Est. CBR Depth(m) Blows Est. CBR Depth(m) 0.0 - 0.1 20 55 1.5 - 1.6 * * 3.0 - 3.1 * * 4.5 - 4.6 0.1 - 0.2 END * 1.6 - 1.7 * * 3.1 - 3.2 * * 4.6 - 4.7 0.2 - 0.3 * * 1.7 - 1.8 * * 3.2 - 3.3 * * 4.6 - 4.7 0.2 - 0.3 * * 1.8 - 1.9 * * 3.2 - 3.3 * 4.6 - 4.7 0.4 - 0.5 * * 1.9 - 2.0 * * 3.4 - 3.5 * 4.9 - 5.0 0.5 - 0.6 * 2.0 - 2.1 * 3.5 - 3.6 * 5.0 - 5.1 0.6 - 0.7 * 2.1 - 2.2 * * 3.6 - 3.7 * 5.3 - 5.2	REFER TO 3.2 Blows * * * * * * * * * * * * *	Est. CBR	
DEPTH OF GROUND WATER TABLE IF INTERSECTED: N/A TEST METHOD: AS 1289.6.3 Depth(m) Blows Est. CBR Depth(m) Blows Est. CBR Depth(m) 0.0 - 0.1 20 55 1.5 - 1.6 * * 3.0 - 3.1 * * 4.5 - 4.6 0.1 - 0.2 END * 1.6 - 1.7 * * 3.1 - 3.2 * * 4.6 - 4.7 0.2 - 0.3 * * 1.7 - 1.8 * * 3.1 - 3.2 * * 4.6 - 4.7 0.2 - 0.3 * * 1.7 - 1.8 * * 3.2 - 3.3 * * 4.7 - 4.8 0.3 - 0.4 * 1.8 - 1.9 * 3.3 - 3.4 * 4.7 - 4.8 0.3 - 0.4 * 1.9 - 2.0 * 3.4 - 3.5 * 4.9 - 5.0 0.5 - 0.6 * 2.0 - 2.1 * 3.5 - 3.6 * 5.0 - 5.1 0.6 - 0.7 * 2.1 - 2.2 * * 3.6 - 3.7 * 5	3.2 Blows * * * * * * * * * * * * * * * * * * *	Est. CBR	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Blows * * * * * * * * * * * * *	<pre> * * * * * * * * * * * * *</pre>	
0.0 - 0.120551.5 - 1.6**3.0 - 3.1**4.5 - 4.60.1 - 0.2END*1.6 - 1.7**3.1 - 3.2**4.6 - 4.70.2 - 0.3**1.7 - 1.8**3.2 - 3.3**4.6 - 4.70.2 - 0.3**1.7 - 1.8**3.2 - 3.3**4.6 - 4.70.2 - 0.3**1.8 - 1.9**3.3 - 3.4*4.7 - 4.80.3 - 0.4**1.8 - 1.9**3.3 - 3.4*4.7 - 4.80.3 - 0.4**1.9 - 2.0**3.3 - 3.4*4.7 - 4.80.4 - 0.5**1.9 - 2.0**3.6 - 3.7*4.8 - 4.90.4 - 0.5**2.0 - 2.1**3.6 - 3.7*5.0 - 5.10.6 - 0.7**2.1 - 2.2**3.6 - 3.7*5.1 - 5.20.7 - 0.8*2.2 - 2.3**3.7 - 3.8*5.2 - 5.30.8 - 0.9*2.3 - 2.4*3.9 - 4.0*5.4 - 5.51.0 - 1.1*2.5 - 2.6**4.0 - 4.1*5.5 - 5.61.1 - 1.2**2.6 - 2.7**4.1 - 4.2*5.6 - 5.71.2 - 1.3**2.8 - 2.9**4.3 - 4.4*5.8 - 5.91.4 - 1.5**2.9 - 3.0* <td>* * * * * * * * * * * * * * * * * * *</td> <td><pre> * * * * * * * * * * * * *</pre></td>	* * * * * * * * * * * * * * * * * * *	<pre> * * * * * * * * * * * * *</pre>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	* * * * * * * * * * * * * * * * * * *	* *	
0.2 - 0.3**1.7 - 1.8**3.2 - 3.3**4.7 - 4.80.3 - 0.4**1.8 - 1.9**3.3 - 3.4**4.8 - 4.90.4 - 0.5**1.9 - 2.0**3.3 - 3.4**4.8 - 4.90.4 - 0.5**1.9 - 2.0**3.3 - 3.4**4.8 - 4.90.4 - 0.5**1.9 - 2.0**3.4 - 3.5**4.9 - 5.00.5 - 0.6**2.0 - 2.1**3.5 - 3.6**4.9 - 5.00.5 - 0.6**2.0 - 2.1**3.5 - 3.6**4.9 - 5.00.6 - 0.7**2.1 - 2.2***3.6 - 3.7**5.0 - 5.10.6 - 0.7**2.1 - 2.2**3.6 - 3.7**5.1 - 5.20.7 - 0.8**2.2 - 2.3**3.6 - 3.7**5.1 - 5.20.7 - 0.8**2.3 - 2.4**3.8 - 3.9**5.3 - 5.40.9 - 1.0**2.4 - 2.5**3.9 - 4.0**5.5 - 5.61.0 - 1.1**2.5 - 2.6**4.0 - 4.1**5.5 - 5.61.1 - 1.2**2.6 - 2.7**4.1 - 4.2**5.6 - 5.71.2 - 1.3**2.8 - 2	* * * * * * * * * * * * * * *	* *	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	* * * * * * * * * * * * * * * *	* * * * * * * * * * * *	
0.4-0.5**1.9-2.0**3.4-3.5***4.9-5.00.5-0.6**2.0-2.1**3.5-3.6**5.0-5.10.6-0.7**2.1-2.2**3.6-3.7**5.1-5.20.7-0.8**2.2-2.3**3.6-3.7***5.1-5.20.7-0.8**2.2-2.3**3.6-3.7***5.2-5.30.8-0.9**2.3-2.4**3.8-3.9**5.3-5.40.9-1.0**2.4-2.5**3.9-4.0**5.3-5.40.9-1.0**2.5-2.6**4.0-4.1*5.5-5.61.0-1.1**2.6-2.7**4.0-4.1**5.5-5.61.1-1.2**2.6-2.7**4.1-4.2**5.6-5.71.2-1.3**2.7-2.8**4.2-4.3**5.8-5.91.3-1.4**2.8-2.9**4.3-4.4**5.9-6.01.4-1.5**2.9-3.0**4.4-4.5*5.9-6.005101520**4.4-4.5*5.9-6.0	* * * * * * * * *	* * * * * * * * * *	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	* * * * * * * * * *	* * * * * * *	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	* * * * * * * *	* * * *	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	* * * * * *	* * * *	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	* * * *	* * * *	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	* * * * * * * *	*	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	* * * *	*	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	* * *	*	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	*		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	*	_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		*	
Cumulative Blows	<u> </u>	*	
		25	
20			
20			
20			
40			
Ê			
ξ ₆₀			
De ptr (mm)			
De			
80			
100			
120			
REMARKS:			
Accredited for compliance with			
ISO/IEC 17025 - Testing.			
ACCREDITATION NUMBER: 4679 APPROVED SIGNATORY: Jarrod Gornall			
WORLD RECOGNISED			
ACCREDITATION DATE: 20/02/2023			

		7.11									
CLIENT:	RIVERINA	OUTBUID -	GRIFFITH, N						6 OF: 9		DCP: 6 (BH3)
			STIGATION -) INDUSTRI	AL SHEDS.			RATION NO		
			R THERMAL						TE OF TEST		3
			LIGO ROAD		GELLIGO, N	SW	DE		N ESL (mm)		
			BOREHOLE		,		Γ	MOISTURE	CONDITION	REFER TO	LOGS
	D	EPTH OF GR	OUND WATE	R TABLE IF IN	NTERSECTED	: N/A	TES	T METHOD	: AS 1289.6	.3.2	
Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR
0.0 - 0.1	18	48	1.5 - 1.6	*	*	3.0 - 3.1	*	*	4.5 - 4.6	*	*
0.1 - 0.2	17	44	1.6 - 1.7	*	*	3.1 - 3.2	*	*	4.6 - 4.7	*	*
0.2 - 0.3	18	48	1.7 - 1.8	*	*	3.2 - 3.3	*	*	4.7 - 4.8	*	*
0.3 - 0.4	END	*	1.8 - 1.9	*	*	3.3 - 3.4	*	*	4.8 - 4.9	*	*
0.4 - 0.5	*	*	1.9 - 2.0	*	*	3.4 - 3.5	*	*	4.9 - 5.0	*	*
0.5 - 0.6	*	*	2.0 - 2.1	*	*	3.5 - 3.6	*	*	5.0 - 5.1	*	*
0.6 - 0.7	*	*	2.1 - 2.2	*	*	3.6 - 3.7	*	*	5.1 - 5.2	*	*
0.7 - 0.8	*	*	2.2 - 2.3	*	*	3.7 - 3.8	*	*	5.2 - 5.3	*	*
0.8 - 0.9	*	*	2.3 - 2.4	*	*	3.8 - 3.9	*	*	5.3 - 5.4	*	*
0.9 - 1.0	*	*	2.4 - 2.5	*	*	3.9 - 4.0	*	*	5.4 - 5.5	*	*
1.0 - 1.1	*	*	2.5 - 2.6	*	*	4.0 - 4.1	*	*	5.5 - 5.6	*	*
1.1 - 1.2	*	*	2.6 - 2.7	*	*	4.1 - 4.2	*	*	5.6 - 5.7	*	*
1.2 - 1.3	*	*	2.7 - 2.8	*	*	4.2 - 4.3	*	*	5.7 - 5.8	*	*
1.3 - 1.4	*	*	2.8 - 2.9	*	*	4.3 - 4.4	*	*	5.8 - 5.9	*	*
1.4 - 1.5	Ť	*	2.9 - 3.0	*	Ť	4.4 - 4.5	*	*	5.9 - 6.0	*	*
					Cun	nulative Blo	ws				
	0		10	20		30		40	50		60
	0										
		< l>									
		\sim									
	50		<u> </u>								
1	00										
1 Depth (mm)	50					<u> </u>					
Ľ)											
pth											
a ²	00						$\overline{}$				
2	50										
2	00										
3											
0	50										
3	50										
					REMARKS:						
		A	od for ar	0000 ···.:							
			ed for compli 17025 - Testir						14 M		
NA	TA	ISU/IEC 1	1023 - 18Stlf	'Б·				a 🗯	U //		
		ACCREDI	TATION NUM	IBER:				Ľ.			
		4679			A	APPROVED S	GNATORY	: Jarroo	Gornall		
	ECOGNISED				ĺ						
	DITATION						DATE:	20/0	2/2023		

CLIENT:	DI\/EDIN	A OUTBUID -							7 05 0				
		HNICAL INVE	,		PAGE: 7 OF: 9 DCP: 7 (BH3) REGISTRATION NO: S23-020								
INOJECI						DATE OF TEST: 1/02/2023							
LOCATION		LAKE CARGEI			GELLIGO. N	SW	DEPTH BELOW ESL (mm): 1900						
		REFER TO				CONDITION		LOGS					
		DEPTH OF GR		TEST METHOD: AS 1289.6.3.2									
Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR		
0.0 - 0.1	17	44	1.5 - 1.6	*	*	3.0 - 3.1	*	*	4.5 - 4.6	*	*		
0.1 - 0.2	16	41	1.6 - 1.7	*	*	3.1 - 3.2	*	*	4.6 - 4.7	*	*		
0.2 - 0.3	16	41	1.7 - 1.8	*	*	3.2 - 3.3	*	*	4.7 - 4.8	*	*		
0.3 - 0.4	15	38	1.8 - 1.9	*	*	3.3 - 3.4	*	*	4.8 - 4.9	*	*		
0.4 - 0.5	15	38	1.9 - 2.0	*	*	3.4 - 3.5	*	*	4.9 - 5.0	*	*		
0.5 - 0.6	17	44	2.0 - 2.1	*	*	3.5 - 3.6	*	*	5.0 - 5.1	*	*		
0.6 - 0.7	17	44	2.1 - 2.2	*	*	3.6 - 3.7	*	*	5.1 - 5.2	*	*		
0.7 - 0.8	END	*	2.2 - 2.3	*	*	3.7 - 3.8	*	*	5.2 - 5.3	*	*		
0.8 - 0.9	*	*	2.3 - 2.4	*	*	3.8 - 3.9	*	*	5.3 - 5.4	*	*		
0.9 - 1.0	*	*	2.4 - 2.5	*	*	3.9 - 4.0	*	*	5.4 - 5.5	*	*		
1.0 - 1.1	*	*	2.5 - 2.6	*	*	4.0 - 4.1	*	*	5.5 - 5.6	*	*		
1.1 - 1.2	*	*	2.6 - 2.7	*	*	4.1 - 4.2	*	*	5.6 - 5.7	*	*		
1.2 - 1.3		*	2.7 - 2.8	*	*	4.2 - 4.3	*	*	5.7 - 5.8	*	*		
1.3 - 1.4 1.4 - 1.5		*	2.8 - 2.9 2.9 - 3.0	*	*	4.3 - 4.4 4.4 - 4.5	*	*	5.8 - 5.9 5.9 - 6.0	*	*		
	0		00	40	Cun	nulative Blo	ws	20	100		100		
	0		20	40		60		80	100		120		
	200												
	300				$\overline{\ }$								
Depth (mm)	400												
De	500												
	600												
	700												
	800												
		Accredit	ed for compli	anco with	REMARKS:								
Ñ N	ATĂ	ISO/IEC :	17025 - Testir	ıg.					μĺ				
	RECOGNISED					APPROVED S	IGNATORY: DATE:		Gornall 2/2023				
								R13 V6 23/0					

PROJECT: OCATION: SOIL DESCF	GEOTECHN LAKE CARGE No. 212 LA RIPTION:	NICAL INVES	GRIFFITH, N STIGATION -	SW			TER REP		8 OF: 9) [) CP: 8 (BH4)	
PROJECT: OCATION: SOIL DESCE	GEOTECHN LAKE CARGE No. 212 LA RIPTION:	NICAL INVES	STIGATION -									
OCATION:	LAKE CARGE No. 212 LA RIPTION:	ELLIGO SOLA) INDUSTRI/			RATION NO:		- (
SOIL DESCR	RIPTION:		R THERMAL I			DATE OF TEST: 1/02/2023						
		KE CARGEL	LIGO ROAD	, LAKE CAR	SW	DEPTH BELOW ESL (mm): NIL						
		SOIL DESCRIPTION: REFER TO BOREHOLE LOGS								REFER TO	LOGS	
	DEPTH OF GROUND WATER TABLE IF INTERSECTED: N/A								: AS 1289.6	.3.2		
Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	
0.0 - 0.1	1	1	1.5 - 1.6	9	20	3.0 - 3.1	*	*	4.5 - 4.6	*	*	
0.1 - 0.2	4	7	1.6 - 1.7	13	32	3.1 - 3.2	*	*	4.6 - 4.7	*	*	
0.2 - 0.3	3	5	1.7 - 1.8	END	*	3.2 - 3.3	*	*	4.7 - 4.8	*	*	
0.3 - 0.4	3	5	1.8 - 1.9	*	*	3.3 - 3.4	*	*	4.8 - 4.9	*	*	
0.4 - 0.5	3	5	1.9 - 2.0	*	*	3.4 - 3.5	*	*	4.9 - 5.0	*	*	
0.5 - 0.6	3	5	2.0 - 2.1	*	*	3.5 - 3.6	*	*	5.0 - 5.1	*	*	
0.6 - 0.7	4	7	2.1 - 2.2	*	*	3.6 - 3.7	*	*	5.1 - 5.2	*	*	
0.7 - 0.8	5	9	2.2 - 2.3	*	*	3.7 - 3.8	*	*	5.2 - 5.3	*	*	
0.8 - 0.9	6	12	2.3 - 2.4	*	*	3.8 - 3.9	*	*	5.3 - 5.4	*	*	
0.9 - 1.0	7	14	2.4 - 2.5	*	*	3.9 - 4.0	*	*	5.4 - 5.5	*	*	
1.0 - 1.1	10	23	2.5 - 2.6	*	*	4.0 - 4.1	*	*	5.5 - 5.6	*	*	
1.1 - 1.2	8	17	2.6 - 2.7	*	*	4.1 - 4.2	*	*	5.6 - 5.7	*	*	
1.2 - 1.3	8	17	2.7 - 2.8	*	*	4.2 - 4.3	*	*	5.7 - 5.8	*	*	
1.3 - 1.4	8	17	2.8 - 2.9	*	*	4.3 - 4.4	*	*	5.8 - 5.9	*	*	
1.4 - 1.5	9	20	2.9 - 3.0	*	*	4.4 - 4.5	*	*	5.9 - 6.0	*	*	
	0		20	40	Cun	nulative Blo	ws	80	100	1	120	
	0		20	40				00			120	
6												
ద 12												
14	00											
16	00											
18	00											
					REMARKS:							
WORLD R		ISO/IEC 1	ed for compli L7025 - Testir TATION NUM	ıg.	, ,	APPROVED S	IGNATORY:		Gornall			
AUUKEI	DITATION						DATE:	20/0 R13 V6 23/	2/2023			

						IETROME						
CLIENT:	RIVFRINA	OUTBUID -							9 OF: 9)	ОСР: 9 (ВН4)	
		NICAL INVE					RATION NO					
		GELLIGO SOLA				DATE OF TEST: 1/02/2023						
LOCATION	I: No. 212 L	AKE CARGEI	LIGO ROAD	, LAKE CAR	DEPTH BELOW ESL (mm): 2000							
SOIL DESCRIPTION: REFER TO BOREHOLE LOGS								NOISTURE	CONDITION	: REFER TO) LOGS	
		DEPTH OF GR	OUND WATE	TEST METHOD: AS 1289.6.3.2								
Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	
0.0 - 0.1	8	17	1.5 - 1.6	*	*	3.0 - 3.1	*	*	4.5 - 4.6	*	*	
0.1 - 0.2	7	14	1.6 - 1.7	*	*	3.1 - 3.2	*	*	4.6 - 4.7	*	*	
0.2 - 0.3	8	17	1.7 - 1.8	*	*	3.2 - 3.3	*	*	4.7 - 4.8	*	*	
0.3 - 0.4	7	14	1.8 - 1.9	*	*	3.3 - 3.4	*	*	4.8 - 4.9	*	*	
0.4 - 0.5	8	17	1.9 - 2.0	*	*	3.4 - 3.5	*	*	4.9 - 5.0	*	*	
0.5 - 0.6	7	14	2.0 - 2.1	*	*	3.5 - 3.6	*	*	5.0 - 5.1	*	*	
0.6 - 0.7	7	14	2.1 - 2.2	*	*	3.6 - 3.7	*	*	5.1 - 5.2	*	*	
0.7 - 0.8		17	2.2 - 2.3	*	*	3.7 - 3.8	*	*	5.2 - 5.3	*	*	
0.8 - 0.9	9	20	2.3 - 2.4	*	*	3.8 - 3.9	*	*	5.3 - 5.4	*	*	
0.9 - 1.0	11	25	2.4 - 2.5	*	*	3.9 - 4.0	*	*	5.4 - 5.5	*	*	
1.0 - 1.1		*	2.5 - 2.6	*	*	4.0 - 4.1	*	*	5.5 - 5.6	*	*	
1.1 - 1.2		*	2.6 - 2.7	*	*	4.1 - 4.2	*	*	5.6 - 5.7	*	*	
1.2 - 1.3		*	2.7 - 2.8	*	*	4.2 - 4.3	*	*	5.7 - 5.8	*	*	
1.3 - 1.4		*	2.8 - 2.9	*	*	4.3 - 4.4	*	*	5.8 - 5.9	*	*	
1.4 - 1.5	*	*	2.9 - 3.0	*	*	4.4 - 4.5	*	*	5.9 - 6.0	*	*	
u)	200											
Depth (mm)	800											
	1000									<u> </u>		
		Accredit	ed for compli		REMARKS:							
N	ATA	ISO/IEC :	17025 - Testir TATION NUM	-				0 a 1 -	H			
WORLD	RECOGNISED	ISO/IEC :		-	ļ	APPROVED S	GIGNATORY: DATE:		d Gornall			

ARTL	AITKEN ROWE Testing	Laborat	ories Pt	v Ltd		PAGE	1 OF 2			
	ARTL Wagga: 4/2 Riedell Stree				SAMPLED BY: ARTL					
	*	, 00			DATE SAMPLED: 1/02/2023					
	TEST REPORT: GEOTECHNICAL INVES	STIGATION -		212	DATE SUBMITTED: 6/02/2023					
	CLIENT : RIVERINA OUTBUILD - GRIFFI		5012 / (IN/ 12	1010	SAMPLING METHOD: AS1289.1.2.1					
JOB DES	CRIPTION : GEOTECHNICAL INVESTIGATI	-	NG CLAUSE:		-					
	PROPOSED INDUSTRIAL SHEE		GELLIGO THE	RMAL						
	PLANT, No. 212 LAKE CARGE				DA	TES TESTED:	7-13/02/202	23		
	,	,		, -		ORDER No.:	*			
MATERIAI	SOURCE : IN-SITU BOREHOLES	PRO	POSED USE :	DESIGN						
MATE	RIAL TYPE : REFER TO BOREHOLE LOGS				REGISTRATI	ON No : R28	S23-020			
	SAMP	LE NUMBER :	1C	1D	1E	1F	1G	4B		
	SAMPLING	GLOCATION :	BH1	BH1	BH1	BH1	BH1	BH4		
	DEPTHS BETWEEN WHICH SAMPLES T	AKEN (mm) :	400-600	1400-1600	2000-2200	2500-2700	3400-3600	100-300		
TESTS	TEST ELEMENT		*	*	*	*	*	*		
AS1289.3.6.1		nm SIEVE %	*	*	*	*	*	*		
		nm SIEVE %	*	*	*	*	*	*		
		nm SIEVE %	*	*	*	*	*	*		
		nm SIEVE %	*	*	*	*	*	*		
		nm SIEVE %	*	*	*	*	*	*		
	PASS 19.0r	nm SIEVE %	*	*	*	*	*	*		
		nm SIEVE %	*	*	*	*	*	*		
		nm SIEVE %	*	*	*	*	*	*		
		nm SIEVE %	*	*	*	*	*	*		
		nm SIEVE %	*	*	*	*	*	*		
		nm SIEVE %	*	*	*	*	*	*		
AS1141.19		µm SIEVE %	*	*	*	*	*	*		
		µm SIEVE %	*	*	*	*	*	*		
		N 13.5 μm %	*	*	*		*	*		
AS1141.19		µm SIEVE %	*	*	*	*	*	*		
		µm SIEVE %	*	*	*	*	*	*		
		N 13.5 μm %	*	*	*	*	*	*		
AS1289.3.1.2		SERVATIONS	*	*	*	*	*	*		
AS1289.3.1.2 AS1289.3.2.1		STIC LIMIT %	*	*	*	*	*	*		
AS1289.3.2.1 AS1289.3.3.1		TICITY INDEX	*	*	*	*	*	*		
A31209.3.3.1	-	ON METHOD	*	*	*	*	*	*		
AS1289.5.1.1	STANDARD MAX. DRY D	-	*	*	*	*	*	*		
(NOT DRY PREPPED)		-	*	*	*	*	*	*		
	OVERSIZE MATERIAL % RETAINED		*	*	*	*	*	*		
	LL METHOD OF CURING TIME DET		*	*	*	*	*	*		
	CURING DURA		*	*	*	*	*	*		
AS1289.3.4.1		HRINKAGE %	18.0	18.5	18.0	18.5	18.5	16.0		
(PREP-AIR DRIED)	-	MOULD mm	253	253	253	253	253	250		
	CRACKING (CA), CRUMBLING (CR) OR CURLING		CA	CA	CA	CA	CA	CA		
AS1289.2.1.1	FIELD MOISTURE		20.6	*	*	*	*	*		
	ACCREDITATION NUMBER: 4679 NISED	* * <u>All samples a</u> APPROVEI	re oven drie D SIGNATOR	Y :	ved during p		therwise stat			

ARTL	AITKEN ROWE Testing	Laborat	ories Pt	y Ltd		PAGE	2 OF 2			
	ARTL Wagga: 4/2 Riedell Stree				SAMPLED BY: ARTL DATE SAMPLED: 1/02/2023					
	*									
	TEST REPORT: GEOTECHNICAL INVES	TIGATION -	SOIL ANAL	YSIS	DATE SUBMITTED: 6/02/2023					
	CLIENT : RIVERINA OUTBUILD - GRIFFI		0012744742	1010	SAMPLING METHOD: AS1289.1.2.1					
JOB DES	CRIPTION : GEOTECHNICAL INVESTIGATI	-	NG CLAUSE:							
	PROPOSED INDUSTRIAL SHEE	RMAL								
	PLANT, No. 212 LAKE CARGE				DA	ES TESTED:	7-13/02/202	23		
				,		ORDER No.:	*			
MATERIA	L SOURCE : IN-SITU BOREHOLES	PROF	POSED USE :	DESIGN						
MATE	RIAL TYPE : REFER TO BOREHOLE LOGS				REGISTRATI	ON No : R28	S23-020			
	SAMP	LE NUMBER :	4C	4D	4E	4F	4G	*		
	SAMPLING	SLOCATION :	BH4	BH4	BH4	BH4	BH4	*		
	DEPTHS BETWEEN WHICH SAMPLES T	AKEN (mm) :	500-700	1000-1200	1700-1900	2800-3000	3400-3600	*		
TESTS	TEST ELEMENT		*	*	*	*	*	*		
AS1289.3.6.1		nm SIEVE %	*	*	*	*	*	*		
		nm SIEVE %	*	*	*	*	*	*		
		nm SIEVE %	*	*	*	*	*	*		
		nm SIEVE %	*	*	*	*	*	*		
		nm SIEVE %	*	*	*	*	*	*		
		nm SIEVE %	*	*	*	*	*	*		
		nm SIEVE %	*	*	*	*	*	*		
		nm SIEVE %	*	*	*	*	*	*		
		nm SIEVE %	*	*	*	*	*	*		
		nm SIEVE %	*	*	*	*	*	*		
AS1141.19		nm SIEVE %	*	*	*	*	*	*		
ASI141.19		µm SIEVE %	*	*	*	*	*	*		
		μm SIEVE % N 13.5 μm %	*	*	*	*	*	*		
AS1141.19		μm SIEVE %	*	*	*	*	*	*		
A31141.19		µm SIEVE %	*	*	*	*	*	*		
		N 13.5 μm %	*	*	*	*	*	*		
		SERVATIONS	*	*	*	*	*	*		
AS1289.3.1.2		UID LIMIT %	*	*	*	*	*	*		
AS1289.3.2.1	PLAS	STIC LIMIT %	*	*	*	*	*	*		
AS1289.3.3.1	PLAS	TICITY INDEX	*	*	*	*	*	*		
	PREPARATI	ON METHOD	*	*	*	*	*	*		
AS1289.5.1.1	STANDARD MAX. DRY D	ENSITY t/m ³	*	*	*	*	*	*		
(NOT DRY PREPPED)	OPTIMUM MOISTURE	CONTENT %	*	*	*	*	*	*		
	OVERSIZE MATERIAL % RETAINED	ON 19.0mm	*	*	*	*	*	*		
	LL METHOD OF CURING TIME DETI	RMINATION	*	*	*	*	*	*		
	CURING DURA		*	*	*	*	*	*		
AS1289.3.4.1	-	HRINKAGE %	17.0	17.5	17.0	19.0	19.0	*		
(PREP-AIR DRIED)		MOULD mm	250	250	250	250	250	*		
464262.2.4.4	CRACKING (CA), CRUMBLING (CR) OR CURLING	. ,	CA	CA *	CA *	CA *	CA *	*		
AS1289.2.1.1	FIELD MOISTURE	CONTENT %	27.2	*	*	*	*	*		
		*								
		*								
	Accredited for compliance	*								
NAT	with ISO/IEC 17025 - Testing.	All samples are oven dried and dry sieved during prep. unless otherwise stated								
	_	All samples a	re oven drie	u and dry sie	vea auring p	rep. uniess o	unerwise stat	.ea		
	ACCREDITATION NUMBER:									
	4679			1	i d					
WORLD RECOG				. .						
ACCREDITA	TION	APPROVE	O SIGNATOR	Y :		DATE:	20/02/2023			
				Jarrod	Gornall					